搜索热:裂纹 硫酸
扫一扫 加微信
首页 > 科研探索 > 科学研究 > 消息正文
首页 > 科研探索 > 科学研究 > 消息正文
雷清泉团队在绝缘纳米结构材料领域获突破性进展
发布:lee_9124   时间:2017/12/12 18:24:40   阅读:1510 
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter
近日,青岛科技大学材料科学与工程学院雷清泉院士团队在绝缘纳米结构材料领域取得突破性进展。提出了一种新型超电绝缘体结构原型——维氧化铝纳元胞,此研究在国内外均属首次。

绝缘电介质在电气与信息工程领域具有重要地位,涉及航空航天航海特别是特高压、高铁与大功率储能电器等。绝缘电介质现有的绝缘类型从工程应用方面存在绝缘工作场不强、耐压等级较低和平均工作寿命较短等诸多弊端,远远不能满足工程实际需要。

雷清泉指出,基于纳米结构材料的纳米电介质工程将是引领绝缘品质大幅度改善的必由之路。雷清泉院士研究团队的成果突破了传统的理论与材料制备技术的限制,在概念与材料结构上取得了超前的突破性进展。根据基础电介质理论,结合固体击穿及气体电子雪崩理论,提出的新型超电绝缘体结构原型——一维氧化铝纳元胞。通过实验证明采用该结构的Al2O3纳孔模板的耐电强度较纯空隙有2-5倍的显著提高(考虑不均匀系数,则有2-3个数量级的提高)。研究结果表明,在纳米尺度下纳元胞的横向尺寸对电子运动有明显的调控或限制作用。基于此研究,未来有望将材料的击穿场强提高10倍以上,具有重大的工程价值。

该研究提出了绝缘电介质从宏观过渡到介观性能研究、从传统制造过渡到纳结构化高性能绝缘电介质材料制造的新思路,对传统电介质击穿理论、材料结构形态研究及制造工艺将会产生根本性变革,对现代高端电缆制造业及特/超高压输变电领域具有重要的意义和潜在的价值。

雷清泉团队“一种超电绝缘体原型-1D气-固氧化铝纳元胞”研究是一项颠覆传统观念的研究,该研究成果发表在纳米能源材料领域的顶尖学术刊物《Nano Energy》上。


来源:科学网
 
相关信息
   标题 相关频次
 “点石成金”不再是梦
 1
 “透明”的纳米锥玻璃
 1
 《Science》人工制备高度复杂纳米结构取得重要进展!
 1
 Acta Materialia:具有纳米孪晶束的异质化纳米结构316L不锈钢断裂行为研究
 1
 Advanced Materials:加利福尼亚大学发现高韧性人字形结构的生物复合材料
 1
 Communications Physics: 纳米结构非晶合金的中程序调控及非晶多型性相变
 1
 MIT开发新技术:让芯片自己组装自己 轻松实现7纳米
 1
 Nature Communications:低成本、高强度分层纳米结构β-钛合金
 1
 Nature 子刊:使用光可裂解性的杂臂嵌段共聚物制造线点双纳米图案
 1
 Nature盘点: 4月材料领域重大进展
 1
 Science: 在微立方块银单晶中形成梯度纳米结构
 1
 Science:基于纳米结构范德瓦尔斯材料的红外双曲变面
 1
 材料前沿最新综述精选(2017年10月第2周)
 1
 超光滑镀层使钢材性能更佳
 1
 创新型材料:类黑色素聚合物
 1
 电气绝缘联盟推动关键绝缘材料国产化
 1
 顶刊动态 | Chem. Rev./AM等生物材料前沿最新科研成果精选
 1
 二氧化钒—从绝缘态到金属态
 1
 化学吹制3D碳纳米片框架,以提高锂存储
 1
 会“自动清洁”的玻璃 纳米级还防眩光
 1
 金属“墨水”书写图案 宽度不到发丝一半
 1
 绝缘又隔热——超出你想象的新型气凝胶
 1
 科学家实现微观化学分子宏观尺度上大型结构合成
 1
 克拉克森大学新型电极提升电池容量 并可快速充电
 1
 论述冷凝微滴自驱离纳米仿生界面机理
 1
 美国开发出不依赖半导体的微电子器件
 1
 纳米/超细晶奥氏体不锈钢腐蚀机制研究进展
 1
 纳米光催化材料做的窗帘可净化空气
 1
 纳米结构金属氧化物气敏材料的研究进展
 1
 气-固反应法制备纳米结构氧化锌及其生长机制
 1
 轻量高强度超弹性3D纳米打印降世!
 1
 清华大学材料学院在无铅压电陶瓷材料方面取得新进展
 1
 清华大学硅基纳米激光器和光放大器研究获重大突破
 1
 清华电机系何金良、李琦提出在固态绝缘材料中实现电损伤自修复的方法
 1
 日本研发出低功耗分子传感器 能耗减至十亿分之一
 1
 三维纳米结构的加工与应用研究取得进展
 1
 生物基绝缘材料可能成为建筑行业的秘密武器
 1
 使用直接写入,研究员实现按需3D纳米打印纯金属结构
 1
 蛙卵珊瑚状硫化钠中空纳米结构作为高倍率性能钠硫电池正极
 1
 新的纳米尺度结构推进金属发展
 1
 新设计解决锂电池硅基阳极粉化难题
 1
 新型海绵状物可吸收自身重量90倍的溢油 还能反复利用
 1
 研究突破:新工艺将实现纳米级金属结构的3D打印
 1
 原子级薄金属纳米结构的新研究
 1
 制备出梯度纳米结构降低合金摩擦系数
 1