搜索热:冷轧 表面清洗
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
高效碲化铋基热电材料中热变形诱导的多尺度微结构效应
          
Hot Deformation Induced Multi-scale Microstructure Effect in High-performance Bismuth Telluride Based Thermoelectric Material

摘    要
简述了碲化铋基合金的制备方法和本征性质;总结了碲化铋基合金中热变形诱导的多尺度微结构,包括原子级本征点缺陷、晶格线缺陷、纳米级的晶格变形区域、微米级的织构和晶粒等;综述了多尺度微结构对碲化铋基合金热电性能的影响。
标    签 热电材料   碲化铋   微结构   热变形   thermoelectric material   bismuth telluride   microstructure   hot deformation  
 
Abstract
The preparation methods and intrinsic properties of bismuth telluride based alloy were briefly introduced. The multi-scale microstructure induced by hot deformation in bismuth telluride based alloy, including atom-scale intrinsic point defects, lattice line defects, nano-scale lattice distorted regions, micro-scale texture and grains were summarized. The effect of the multi-scale microstructure on thermoelectric properties of bismuth telluride based alloys was reviewed.

中图分类号 O472   DOI 10.11973/jxgccl201711001

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 国家自然科学基金资助项目(61534001,51271165)

收稿日期 2017/4/24

修改稿日期 2017/10/4

网络出版日期

作者单位点击查看

备注翟仁爽(1991-),男,江苏扬州人,博士研究生

引用该论文: ZHAI Renshuang,WU Yehao,ZHU Tiejun,ZHAO Xinbing. Hot Deformation Induced Multi-scale Microstructure Effect in High-performance Bismuth Telluride Based Thermoelectric Material[J]. Materials for mechancial engineering, 2017, 41(11): 1~12
翟仁爽,吴业浩,朱铁军,赵新兵. 高效碲化铋基热电材料中热变形诱导的多尺度微结构效应[J]. 机械工程材料, 2017, 41(11): 1~12


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】DISALVO F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285: 703-706.
 
【2】YANG J, CAILLAT T. Thermoelectric materials for space and automotive power generation[J]. MRS Bulletin, 2006, 31(3): 224-229.
 
【3】YANG J, STABLER F R. Automotive applications of thermoelectric materials[J]. Journal of Electronic Materials, 2009, 38(7): 1245-1251.
 
【4】KUMAR G S, PRASAD G, POHL R O. Experimental determinations of the lorenz number[J]. Journal of Materials Science, 1993, 28(16): 4261-4272.
 
【5】ROWE D. Thermoelectrics and its energy harvesting: materials, preparation, and characterization in thermoelectrics[J]. Journal of Solid State Chemistry, 2012, 115(11):214-224.
 
【6】LIU W, TAN X, YIN K, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of N-type Mg2Si1-xSnx solid solutions[J]. Physical Review Letter, 2012, 108(16): 166601-166601.
 
【7】WANG H, PEI Y, LALONDE A D, et al. Weak electron-phonon coupling contributing to high thermoelectric performance in N-type PbSe[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(25): 9705-9709.
 
【8】KIM S I, LEE K H, MUN H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics[J]. Science, 2015, 348(6230): 109-114.
 
【9】BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416): 414-418.
 
【10】YANG S H, ZHU T J, SUN T, et al. Nanostructures in high-performance (GeTe)x(AgSbTe2)100-x thermoelectric materials[J]. Nanotechnology, 2008, 19(24): 245707-245707.
 
【11】FU C, BAI S, LIU Y, et al. Realizing high figure of merit in heavy-band P-type half-heusler thermoelectric materials[J]. Nature Communication, 2015, 6: 8144-8144.
 
【12】POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 2008, 320(5876): 634-638.
 
【13】ZHU T J, FU C G, XIE H H, et al. Lattice thermal conductivity and spectral phonon scattering in FeVSb-based half-heusler compounds[J]. Europhysics Letters, 2013, 104(4): 46003-46003.
 
【14】ZHU T, YU G, XU J, et al. The role of electron-phonon interaction in heavily doped fine-grained bulk silicons as thermoelectric materials[J]. Advanced Electronic Materials, 2016, 2(8): 160-171.
 
【15】HU L, WU H, ZHU T, et al. Tuning multiscale microstructures to enhance thermoelectric performance of N-type bismuth-telluride-based solid solutions[J]. Advanced Energy Materials, 2015, 5(17): 1-10.
 
【16】VINING C B, LASKOW W, HANSON J O, et al. Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys[J]. Journal of Applied Physics, 1991, 69(8): 4333-4340.
 
【17】LIU Y, XIE H, FU C, et al. Demonstration of a phonon-glass electron-crystal strategy in (Hf,Zr)NiSn half-heusler thermoelectric materials by alloying[J]. Journal of Materials Chemistry A, 2015, 3(45): 22716-22722.
 
【18】PEI Y, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473(7345): 66-69.
 
【19】JAWORSKI C M, KULBACHINSKⅡ V, HEREMANS J P. Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power[J]. Physical Review B, 2009, 80(23):308-310.
 
【20】FU C, ZHU T, LIU Y, et al. Band engineering of high performance P-type FeNbSb based half-heusler thermoelectric materials for figure of merit zT>1[J]. Energy & Environmental Science, 2015, 8(1): 216-220.
 
【21】XU Z, WU H, ZHU T, et al. Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization[J]. NPG Asia Materials, 2016, 8(9): 302-307.
 
【22】PAN Y, LI J F. Thermoelectric performance enhancement in N-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure[J]. Npg Asia Materials, 2016, 8(6):1-8.
 
【23】DELVES R T, BOWLEY A E, HAZELDEN D W, et al. Anisotropy of the electric conductivity in bismuth telluride[J]. Proceedings of Physical Society, 1961, 78(5): 838-844.
 
【24】YIM W M, ROSI F D. Compound tellurides and their alloys for peltier cooling—A review[J]. Solid State Electronics, 1972, 15(10):1121-1140.
 
【25】OFFERGELD G, CAKENBERGHE J V. Stoichimetry of bismuth telluride and related compounds[J]. Nature, 1959, 184(4681): 185-186.
 
【26】STARY Z, HORAK J, STORDEUR M, et al. Antisite defects in Sb2-xBixTe3 mixed crystals[J]. Journal of Physics and Chemistry of Solids, 1988, 49(1): 29-34.
 
【27】ETTENBERG M H, MADDUX J R, TAYLOR P J, et al. Improving yield and performance in pseudo-ternary thermoelectric alloys (Bi2Te3)(Sb2Te3)(Sb2Se3)[J]. Journal of Crystal Growth, 1997, 179(3/4):495-502.
 
【28】TAYLOR P J, MADDUX J R, JESSER W A, et al. Room-temperature anisotropic, thermoelectric and electrical properties of N-type (Bi2Te3)90(Sb2Te3)5(Sb2Se3)5 and compensated P-type (Bi2Te3)72(Sb2Te3)25(Sb2Se3)3 semiconductor alloys[J]. Journal of Applied Physics, 1999, 85(11): 7807-7813.
 
【29】ZHOU Y, LI X, BAI S, et al. Comparison of space- and ground-grown Bi2Se0.21Te2.79 thermoelectric crystals[J]. Journal of Crystal Growth, 2010, 312(6): 775-780.
 
【30】XIAO Y, CHEN G, QIN H, et al. Enhanced thermoelectric figure of merit in P-type Bi0.48Sb1.52Te3 alloy with WSe2 addition[J]. Journal of Materials Chemistry A, 2014, 2(22): 8512-8516.
 
【31】ZHAO X B, JI X H, ZHANG Y H, et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites[J]. Applied Physics Letters, 2005, 86(6): 1665-1669.
 
【32】KIM H J, HAN M K, KIM H Y, et al. Morphology controlled synthesis of nanostructured Bi2Te3[J]. Bulletin of the Korean Chemical Society, 2012, 33(12): 3977-3980.
 
【33】ZHANG Y, HU L P, ZHU T J, et al. High yield Bi2Te3 single crystal nanosheets with uniform morphology via a solvothermal synthesis[J]. Crystal Growth & Design, 2013, 13(2): 645-651.
 
【34】SHI W, WU F, WANG K, et al. Preparation and thermoelectric properties of yttrium-doped Bi2Te3 flower-like nanopowders[J]. Journal of Electronic Materials, 2014, 43(9): 3162-3168.
 
【35】MEHTA R J, ZHANG Y, KARTHIK C, et al. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly[J]. Nature Materials, 2012, 11(3): 233-240.
 
【36】XIE W, TANG X, YAN Y, et al. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys[J]. Applied Physics Letters, 2009, 94(10): 102-111.
 
【37】LI J H, TAN Q, LI J F, et al. BiSbTe-based nanocomposites with high zT: the effect of SiC nanodispersion on thermoelectric properties[J]. Advanced Functional Materials, 2013, 23(35): 4317-4323.
 
【38】SHEN J J, ZHU T J, ZHAO X B, et al. Recrystallization induced in situ nanostructures in bulk bismuth antimony tellurides: a simple top down route and improved thermoelectric properties[J]. Energy & Environmental Science, 2010, 3(10): 1519-1523.
 
【39】ZHU T, XU Z, HE J, et al. Hot deformation induced bulk nanostructuring of unidirectionally grown P-type (Bi,Sb)2Te3 thermoelectric materials[J]. Journal of Materials Chemistry A, 2013, 1(38): 11589-11594.
 
【40】XU Z J, HU L P, YING P J, et al. Enhanced thermoelectric and mechanical properties of zone melted P-type (Bi,Sb)2Te3 thermoelectric materials by hot deformation[J]. Acta Materialia, 2015, 84: 385-392.
 
【41】HU L P, ZHU T J, WANG Y, et al. Shifting up the optimum figure of merit of P-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction[J]. NPG Asia Materials, 2014, 6(2): 88-96.
 
【42】HU L P, ZHU T J, YUE X Q, et al. Enhanced figure of merit in antimony telluride thermoelectric materials by In-Ag Co-alloying for mid-temperature power generation[J]. Acta Materialia, 2015, 85: 270-278.
 
【43】HU L, GAO H, LIU X, et al. Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects[J]. Journal of Materials Chemistry, 2012, 22(32): 16484-16490.
 
【44】ZHAO L D, ZHANG B P, LI J F, et al. Enhanced thermoelectric and mechanical properties in textured N-type Bi2Te3 prepared by spark plasma sintering[J]. Solid State Sciences, 2008, 10(5): 651-658.
 
【45】YAN X, POUDEL B, MA Y, et al. Experimental studies on anisotropic thermoelectric properties and structures of N-type Bi2Te2.7Se0.3[J]. Nano Letter, 2010, 10(9): 3373-3378.
 
【46】LIU W S, ZHANG Q, LAN Y, et al. Thermoelectric property studies on Cu-doped N-type CuxBi2Te2.7Se0.3 nanocomposites[J]. Advanced Energy Materials, 2011, 1(4): 577-587.
 
【47】HU L P, LIU X H, XIE H H, et al. Improving thermoelectric properties of N-type bismuth-telluride-based alloys by deformation-Induced lattice defects and texture enhancment[J]. Acta Materialia, 2012, 60(11): 4431-4437.
 
【48】TANG Z, HU L, ZHU T, et al. High performance N-type bismuth telluride based alloys for mid-temperature power generation[J]. Journal of Materials Chemistry C, 2015, 3(40): 10597-10603.
 
【49】GONZALEZ E J, BLENDELL J E, CLINE J P, et al. Texture development in Bi2Te3 during hot forging[J]. Journal of Materials Research, 2011, 13(3): 766-773.
 
【50】贾建波. 热压烧结Ti-22Al-25Nb合金的微观组织与高温变形机理[D]. 哈尔滨:哈尔滨工业大学, 2014.
 
【51】HU L, ZHU T, LIU X, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials[J]. Advanced Functional Materials, 2014, 24(33): 5211-5218.
 
【52】SRINIVASAN R, GOTHARD N,Spowart J. Improvement in thermoelectric properties of an N-type bismuth telluride (Bi2Se0.3Te2.7) due to texture development and grain refinement during hot deformation[J]. Materials Letters, 2010, 64(16): 1772-1775.
 
【53】LOTGERING F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures Ⅱ[J]. Journal of Inorganic and Nuclear Chemistry, 1960, 16(1): 100-108.
 
【54】NAVRATIL J, STARY Z,PLECHACEK T. Thermoelectric properties of P-type antimony bismuth telluride alloys by cold pressing[J]. Materials Research Bulletin, 1996, 31(12): 1559-1566.
 
【55】SCHULTZ J M, MCHUGH J P,TILLER W A. Effects of heavy deformation and annealing on the electrical properties of Bi2Te3[J]. Journal of Applied Physics, 1962, 33(8): 2443-2450.
 
【56】JIANG G,HE J,ZHU T,et al.High performance Mg2(Si,Sn) solid solutions: a point defect chemistry approach to enhancing thermoelectric properties[J]. Advanced Functional Materials, 2014, 24: 3776-3781.
 
【57】DU Z,ZHU T,CHEN Y,et al.Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions[J]. Journal of Materials Chemistry, 2012, 22(14): 6838-6844.
 
【58】TOBERER E S, MAY A F,SNYDER G J. Zintl chemistry for designing high efficiency thermoelectric materials[J]. Chemistry of Materials, 2010, 22(3): 624-634.
 
【59】SCANLON D O, KING P D, SINGH R P, et al. Controlling bulk conductivity in topological insulators: key role of anti-site defects[J]. Advanced Materials, 2012, 24(16): 2154-2158.
 
【60】ZHU T, HU L, ZHAO X, et al. New insights into intrinsic point defects in V2VI3 thermoelectric materials[J]. Advanced Science, 2016,3(7): 1-16.
 
【61】GEORGE W R, SHARPLES R,THOMPSON J E. The sintering of bismuth telluride [J]. Proceedings of The Physical Society of London, 1959, 74(6): 768-770.
 
【62】KIM H J, KIM H C, HYUN D B,et al. Thermoelectric properties of p-type (Bi,Sb)2Te3 alloys fabricated by the hot pressing method[J]. Metals and Materials International, 1998, 4(1): 75-81.
 
【63】ZHAO L D, ZHANG B P, LI J F, et al. Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering[J]. Physica B: Condensed Matter, 2007, 400(1/2): 11-15.
 
【64】OH T S, HYUN D B, KOLOMOETS N V. Thermoelectric properties of the hot-pressed (Bi,Sb)2(Te,Se)3 alloys[J]. Scripta Materialia, 2000, 42(9): 849-854.
 
【65】胡利鹏. (Bi,Sb)2(Te,Se)3合金的多尺度微观结构及其热电性能优化[D]. 杭州:浙江大学, 2015.
 
【66】HASHIBON A, ELSÄSSER C. First-principles density functional theory study of native point defects in Bi2Te3[J]. Physical Review B, 2011, 84(14):2149-2157.
 
【67】CHUNG D Y, HOGAN T, BRAZIS P,et al. CsBi4Te6: A high-performance thermoelectric material for low-temperature applications[J]. Science, 2000, 287(5455):1024-1024.
 
【68】WANG S, TAN G, XIE W, et al. Enhanced thermoelectric properties of Bi2(Te1-xSex)3 based compounds as n-type legs for low-temperature power generation[J]. Journal of Materials Chemistry, 2012, 22(39): 20943-20951.
 
【69】WANG S Y, XIE W J, LI H, et al. High performance n-type (Bi,Sb)2(Te,Se)3 for low temperature thermoelectric generator[J]. Journal of Physics D: Applied Physics, 2010, 43(33):335-404.
 
【70】LIU W, LUKAS K C, MCENANEY K, et al. Studies on the Bi2Te3-Bi2Se3-Bi2S3 system for mid-Temperature thermoelectric energy conversion[J]. Energy & Environmental Science, 2013, 6(2): 552-560.
 
相关信息
   标题 相关频次
 2E12铝合金热变形过程中的动态软化机制
 3
 Al-1.04Mg-0.85Si-0.01Cu铝合金的热压缩变形行为
 3
 氢对热变形TC4钛合金显微组织的影响
 3
 热变形量对低铬白口铸铁显微组织和冲击性能的影响
 3
 热挤压对粉末冶金PM-0002镍基高温合金组织及热变形行为的影响
 3
 AZ31镁合金的热变形行为及加工图
 2
 AZ31镁合金在热压缩过程中的变形行为
 2
 BH10Mn2G焊接用钢的热变形行为
 2
 DP处理后GH4169合金在热变形过程中的组织演变
 2
 超声处理对铸造7050铝合金热压缩变形行为的影响
 2
 沉积温度对AZ31镁合金镍磷合金镀层的影响
 2
 钒微合金化钢的强韧性研究
 2
 基于元模型方法的6013铝合金热变形流变行为建模
 2
 难变形镍基高温合金GH710的高温变形特性
 2
 热变形和弛豫对低碳贝氏体钢相变的影响
 2
 热电材料CoSi和CrSi2的晶格热膨胀性
 2
 失效移相器中Li-Zn铁氧体片的开裂原因
 2
 稀土元素铈对超级双相不锈钢热变形能力的影响
 2
 新型CHDG-A06奥氏体不锈钢的热变形行为
 2
 新型抗热损伤车轮钢20CrSiMnMo的热变形行为
 2
 应变速率对不同钢压缩真应力-应变曲线的影响
 2
 铸造镁铝合金的微观破坏机理原位观测技术与应用
 2
 #电子材料周报#新型电池——钠离子电池
 1
 《自然》《科学》一周(4.13-4.19)材料科学前沿要闻一览
 1
 《自然》《科学》一周(9.25-10.1)材料科学前沿要闻
 1
 0.95K0.47Na0.47Li0.06NbO3-0.05BaxSr1-xTiO3无铅压电陶瓷的微观结构与性能
 1
 06CuNiCrMoNb钢模拟焊接热影响区的组织和性能
 1
 1000-3738(2007)02-0009-04
 1
 102钢的显微组织形态与室温力学性能的关系
 1
 1060铝在累积轧制中组织和性能的演变
 1