搜索热:董洪标 甄良
扫一扫 加微信
首页 > 新闻资讯 > 会议 > 消息正文
首页 > 新闻资讯 > 会议 > 消息正文
第八届先进纤维与聚合物材料国际会议在沪举行
发布:lee_9124   时间:2017/10/8 21:08:11   阅读:1211 
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter
科技与旗袍,两个看似不相及的元素,经过东华大学师生的设计研发,日前以“海派科技旗袍”的闪烁风姿,引发了人们对未来生活的无限畅想,并走上英国爱丁堡艺术节的舞台。今天,在该校开幕的第八届先进纤维与聚合物材料国际会议(ICAFPM)为我们解开了深藏在旗袍背后关于“下一代纤维”的秘密。

此次会议由纤维材料改性国家重点实验室(东华大学)、东华大学先进低维材料中心和材料科学与工程学院联合主办。大会吸引了来自全球20个国家和地区包含15名院士在内的500余名海内外专家学者齐聚东华大学,围绕“下一代纤维:改变你的生活”这一主题,共同探讨下一代纤维与聚合物材料的研究发展问题。大会设11个分会,包括“高性能纤维与复合材料”“纳米技术在纤维和聚合物中的应用”“智能纤维、智能纺织品与可穿戴智能设备”“多功能与多组分纤维”“环保纤维与聚合物”“低维材料”等10个学术会议。7日在东华大学开幕的第八届中日韩女科学家论坛为大会第11分会,论坛以“科学中的女性:合作与创新”为主题,来自日本、韩国的女科学家与中国女科技工作者、女企业家代表围绕科技女性的领导力、示范力和创新力三个方面开展研讨。

美国工程院院士、东华大学先进低维材料中心主任兼首席科学家程正迪,中国科学院院士、纤维材料改性国家重点实验室(东华大学)学术委员会主任周其凤共同担任本届大会学术委员会主席。东华大学材料科学与工程学院院长、纤维材料改性国家重点实验室(东华大学)主任朱美芳担任大会组委会主席。

会议邀请到美国科学院院士、美国工程院院士、美国人文与科学院院士、美国西北大学Tobin J.Marks教授,美国工程院院士、美国佐治亚理工学院Elsa Reichmanis教授,英国皇家化学会会士、美国斯坦福大学崔屹教授等10位知名专家学者做大会报告,报告主题涵盖柔性电子材料、可收集能量和调节舒适度的纺织品、功能纳米纤维、从电子、能源到环境的多尺度纤维等不同学科领域。

据悉,ICAFPM由东华大学2002 年发起并主办,已成功举办7届,曾与美国阿克隆大学、美国纤维学会等美、德、英、日等纤维学科发达国家高校或学术机构联合举办。会议自2005年起每两年举办一届,是先进纤维与聚合物材料领域具有重要国际影响力的学术盛会,近年来其学术影响力仍在不断提升。本届会议倡导重视加强基础理论研究,敏锐把握国际学术前沿,深入开展学科交叉与合作,会议主题、与会专家学科背景等均深层次呼应了此次会议基础性、前沿性和交叉性的三大特点。

首设钱宝钧纤维材料两项大奖

会议期间首次设立并宣布“钱宝钧纤维材料杰出贡献奖”及“钱宝钧纤维材料青年学者奖”。钱宝钧先生为中国纤维材料的奠基人之一和东华大学纤维材料学科创始人,在纤维材料科学领域做出杰出贡献。为更好地传承钱宝钧先生的事业弘扬其精神,促进纤维材料领域的可持续发展,纤维材料改性国家重点实验室(东华大学)发起并设立此两类奖项,每两年评选一次并在ICAFPM会议期间颁奖,分别用于表彰奖励在纤维材料领域基础研究、成果转化和人才培养等方面做出创造性突出贡献的国内外学者,以及在该领域有初期成就和发展潜力的国内外青年学者。

高性能纤维家族里的新宠儿

在我国高性能纤维的发展史上,东华大学材料学科一直占有重要的一席之地。会上,东道主带着高性能纤维家族的新宠儿再度亮相。

碳纤维作为国家急需的战略物资,具有其他材料无可替代的高强度、高模量、耐高温、耐腐蚀等一系列优异性能。上世纪90年代,该校研发的“航天级高纯粘胶基碳纤维”为我国头号战略武器成功发射做出重要贡献。近年来,东华大学碳纤维科研团队持续不懈攻关,成功控制纤维内部微缺陷,制备出高强/中模量碳纤维,相关成果可应用到航空航天、核工业、兵器等国防军工领域,在压力容器、风力发电机叶片和新能源汽车等民用领域也将大有作为。

大气污染成为人们日益关注的话题,东华大学材料学院张清华教授领衔研发的聚酰亚胺(PI)纤维可以给那些排放废气的大烟囱编织一个耐高温的袋式除尘器,表现出优异的过滤性能。该类产品已成功应用于高温过滤领域,对治理因燃煤、水泥生产、垃圾焚烧等所造成的大气污染发挥了重要作用。此外,该团队研发的PI纤维在火焰中不燃烧、不熔融,且没有烟雾放出,由PI纤维制备出的消防服装使得消防人员的自我保护和紧急救灾能力明显增强。

智能纤维让生活三十六变

将海派文化与高新技术及材料结合的东华大学科技旗袍,是否让你称羡不已?没错,有个词必须脑补,那就是“智能纤维”。

智能纤维是指能感知外界环境(机械、热、光、湿度等)或内部状态所发生的变化,并做出及时响应的纤维。近年来,随着纳米技术、电子信息技术等前沿技术的发展运用,智能纤维得以迅猛发展,未来它将要改变的就是人们的生活。

今年8月曾亮相英国爱丁堡艺术节的东华大学科技旗袍采用光纤、OLED等发光线条与图形设计方法,将海派文化与变形、变色、发光材料,激光雕刻与切割等多种科技元素相结合,模特们优美的身姿与交替变幻的音乐灯光摇曳相应,展示了国内前沿科技,向世界传播了上海的时尚流行及东华的智慧力量。

在纤维材料改性国家重点实验室(东华大学),王宏志教授课题组经多次实验,已实现纤维在通电环境下的自主变色。这种能主动感知外界环境并作出反应的纤维,可自行发电、发光发热及变色变形。只需导入2-3伏低电压刺激,纤维就能在毫秒内迅速实现红黄蓝三色变化,并保持颜色达半小时。被扭曲、打结或编织后的纤维仍能变色。

下一代智能纤维将与“智能服装”“可穿戴设备”紧密结合,未来服装除了传统的穿着功能外,还将拥有健康监测、智能调温变形、变色发光、理疗防护等多种“黑”科技。

再生聚酯,纤维圈里的绿色先锋

“绿色”在五大发展理念中与地球环境最为息息相关。而在“绿色纤维”的大家庭里,再生聚酯是循环再利用化学纤维的重要代表。

“变废为宝”,东华大学材料学院王华平教授对这个词给出了纤维版的新注解。我国在国际聚酯纤维领域占主导地位,2016年全国聚酯纤维产量超过4400万吨,但纤维循环回收利用率却不足200万吨,资源浪费严重,固废物处理压力巨大。

面对行业现状,王华平团队针对废旧纤维制品成分复杂、分离困难、组成与品质波动大等特征,依托“再生聚酯纤维高效制备技术”项目进行科研攻关,经过全链条设计,产学研用合作,短短一年突破了废聚酯纤维醇解-再聚合、高效过滤除杂等多项关键技术,建成世界上首套十万吨级BHET化学法聚酯再生生产线,成为我国纤维绿色制造的核心组成部分。实现了汽车内饰用再生聚酯有色纤维、土工用粗旦再生聚酯有色纤维、低熔点再生聚酯有色纤维等系列产品的规模化稳定生产。其产品广泛出口至欧美国家,提高了再生聚酯纤维的附加值,拓展了应用领域,同时,我国再生聚酯纤维行业的整体水平与国际形象得到有力提升。

东华大学副校长邱高在接受《中国科学报》记者采访时表示,前不久东华大学入选“双一流”建设高校,下一步学校将继续推进实施以纺织为一体、材料和设计为两翼的“一体两翼”学科发展规划,立足中国特色,瞄准世界一流,着力发展“新型纤维材料”“先进纺织智能制造技术”“服装科技与时尚设计”“纺织新材料”等多个跨学科综合性学科领域。希望此次会议能为推动纤维材料学科未来更好发展带来深远影响,东华大学将积极对接上海建设具有全球影响力的科技创新中心,致力于研发各类高新技术运用于国防军工、国计民生各个领域,抢占国家战略特需制高点,为国防建设、航空航天、人民生活改善做出重要贡献,为我国发展成为世界化纤强国持续提供强有力的学科、人才和技术支撑。


来源:科学网
 
相关信息
   标题 相关频次
 高技术纤维制成新型组织替代物
 1