搜索热:2002 x ray
扫一扫 加微信
首页 > 科研探索 > 科学研究 > 消息正文
首页 > 科研探索 > 科学研究 > 消息正文
Science最新:发现超冷原子有趣的磁行为
发布:lee_9124   时间:2017/10/5 20:03:38   阅读:456 
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter


每个绿点表示单独的锂原子。 研究人员使用量子气体显微镜来对原子进行成像,这些原子已经被冷却到高于绝对零度的几分之一并被激光固定。
来源:图片由普林斯顿大学彼得·布朗提供

通过冷却到绝对零度以上的十亿分之几的原子,普林斯顿大学的研究人员领导的团队发现了一个有趣的磁性行为,这可以帮助解释高温超导性如何工作。

研究人员发现,对这些超冷原子施加强磁场会让它们以交替的方式排列并相互偏离。这种被研究人员称作“倾斜反铁磁性”的行为与通过模型的预测相一致。该模型用了数十年,用来理解特定材料如何产生超导效应。研究结果发表在《科学》杂志上。

 “之前没有人在这个系统中观察到这种类型的行为”,普林斯顿大学物理学助理教授Waseem Bakr说,“我们用激光制造人造水晶,然后探索微观细节发生了什么。这种研究在日常材料中做不到。”

在普林斯顿贾德温厅的桌面上进行的实验使得描述量子行为如何产生超导性的模型可被探索。超导状态是电流可以无阻力地流动,并且被用于电力传输和制造强大的电磁铁。虽然了解了传统超导体的基础,研究人员仍在一种称作铜氧化物铜基材料中探索高温超导理论。

由于铜酸盐的复杂性,研究人员很难直接研究它们去寻找什么特性导致它们具有无电阻性能。作为替代,通过使用激光和超冷原子构建合成晶体,研究人员可以提出原本无法提出的问题。

伯克尔和他的团队将锂原子冷却到绝对零度以上的百亿分之几,到达原子遵循量子物理学规律的温度。研究人员使用激光器创建一个网格,以将超冷原子固定。这种称为光栅的网格可以被想成是完全由激光产生的虚拟蛋托盘,其中原子可以从一个阱跳到下一个。

该团队使用该装置来观察单个原子之间的相互作用。这种作用以类似于微小磁体的方式表现,由称为自旋的量子性质产生。每个原子的自旋可以向上或向下。如果两个原子落在同一地点,他们就会因强烈的排斥作用而铺开,每个阱中只有一个原子。蛋托盘的相邻阱中的原子倾向于自旋相反。

由于冷系统的量子性质,这种称为反铁磁性的效应在非常低的温度下发生。当两种类型的自旋群体大致相等时,只要相邻旋转保持反对平行,自旋可以转到任何方向。

当研究人员对原子应用强磁场时,他们看到让他们好奇的东西。普林斯顿大学的研究人员利用可以对晶格点上的各个原子进行成像的高分辨率显微镜,研究了原子与磁场强度的磁相关性的变化。在强场的存在下,相邻的自旋保持反向,但是转到了一个与磁场呈直角的平面。仔细观察,研究人员看到,相反排列的原子在场的方向上稍微倾斜,使得磁体仍然反向面对,但在平面中对齐得不精确了。

去年在哈佛大学,马萨诸塞理工学院和慕尼黑路德维希·马克西米利安大学的实验中观察到旋转相关性。但普林斯顿大学的研究首先对原子应用强场并观察斜角反铁磁体。

观察结果是由费米-哈伯德(Fermi-Hubbard)模型预测的。该模型用于解释在比较高的温度下,铜酸盐如何超导。费米-哈伯德(Fermi-Hubbard)模型由普林斯顿大学物理学教授约瑟夫·亨利(Joseph Henry)荣誉物理学教授菲利普·安德森(Philip Anderson)改进。他于1977年因磁无序系统的电子结构的理论研究工作获得诺贝尔物理学奖。

“更好地了解费米-哈伯德模型可以帮助研究人员设计类似具有超导性能的材料。” Bakr说。
研究还研究了去除蛋托中的一些原子会发生什么,在网格中引入空洞。研究人员发现,当施加磁场时,反映和在铜氧化物上所做的测量相一致。“这更证实提出的费米 - 哈伯德模型可能是解释我们在材料中所见的现象的正确模型。”巴克尔说。

普林斯顿小组包括研究生Peter Brown,他进行了许多实验,是该论文的第一作者。实验的额外贡献来自物理学研究生Debayan Mitra和Elmer Guardado-Sanchez,物理学副研究学者Peter Schauss和现在在哥伦比亚大学的前博士后研究员Stanimir Kondov。

这项研究贡献了对圣约瑟茅斯州立大学的埃桑·哈特米,里约热内卢联邦大学的艾萨·帕瓦,俄亥俄州立大学的南迪尼·特里维迪以及普林斯顿的Cyrus Fogg Brackett物理教授的理论的理解。


来源:材料科技在线

相关信息
   标题 相关频次
 #电子材料周报#自愈传感器,“电子皮肤”不再遥远
 1
 《自然》《科学》一周(12.07-12.13)材料科学前沿要闻
 1
 《自然》《科学》一周(4.9-4.15)材料科学前沿要闻
 1
 3-4月Nature材料前沿科研成果精选
 1
 Piezomagnetic材料在拉伸时会改变磁性
 1
 Science:铁基超导体表面拓扑超导性的研究
 1
 Science:通过电子隧穿在2D范德华晶体绝缘体中探测磁性
 1
 Science最新成果:走进单原子存储器——单钬(Ho)原子可作为稳定磁存储器
 1
 北京磁性智能材料新体系研制取得重要进展
 1
 超导又一重大应用——超导磁分离技术让污水变清水
 1
 超高磁场中二硫化钼仍保持超导性 打破“泡利顺磁性”定律 可用于未来量子计算机
 1
 超高压下二硫化钼具有超导性
 1
 车辆被剐蹭了你能第一时间知道:科学家研发磁性“神经”新材料
 1
 复杂金属合金中的自旋秩序
 1
 高温液相醇解法制备钴纳米粒子
 1
 合肥物质科学院:新型插层铁硒超导材料磁性研究获进展
 1
 合肥研究院钙钛矿结构RCrO3体系磁性及磁电效应研究取得进展
 1
 核融合将实现? 科学家发现全新磁能超导材料
 1
 加拿大科学家发现超导态新特性 有助研发悬浮列车与超级计算机
 1
 科学家研发出“超导带” 导电能力超出传统电线
 1
 科学家研制大口径十字交叉温孔高场超导磁体
 1
 利用金属氢化物新材料提升超导性能
 1
 零下70摄氏度和高压下:硫化氢成为超导
 1
 美国正在研究能抵御“电磁脉冲”武器的混凝土
 1
 清华大学物理系:在锡烯中发现超导电性
 1
 日本东北大学发现黄金的“磁性魅力”
 1
 上海市2017年度“科技创新行动计划”新材料技术领域项目指南
 1
 神奇手性超导体在一定变形时产生电流
 1
 失稳金属为超导电性的研究提供了新途径
 1
 石墨烯动态一周纵览 日期:150730-150805
 1
 室温超导,梦想不再遥远
 1
 通过磁性来控制声子
 1
 铜基超导体中杂质诱导的纳米尺度局域晶格应变的定量表征研究获进展
 1
 我国强磁场红外光谱研究铁基超导中狄拉克费米子获进展
 1
 新材料十三五规划渐近 聚焦四大前沿领域
 1
 新方法成功“唤醒”石墨烯“沉睡”超导性
 1
 新方法诱导非超导材料产生超导性 可让超导体性能更强
 1
 新型超导体:虽然脆但很硬
 1
 新型高质量拓扑超导材料问世
 1
 中国物理学家实现纠缠 10 个超导量子比特
 1
 中科院强磁场科学中心制成耐寒“金属花”
 1
 中科院与阿里云联合发布11比特云超导量子计算服务
 1
 中日科学家发现新型拓扑超导材料
 1
 转变温度387K 室温超导体已经实现了?
 1