搜索热:20 对比试件
扫一扫 加微信
首页 > 新闻资讯 > 行业动态 > 消息正文
首页 > 新闻资讯 > 行业动态 > 消息正文
HPLC和UHPLC色谱柱的十大误区
发布:kittyll   时间:2016/3/21 16:39:27   阅读:1123 
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

图片来源: Yagi Studio/Getty图库
 
 
误区10:空气会彻底毁灭一根HPLC色谱柱——假!


图片来源: Stockbyte/Getty 图库

当色谱柱不与色谱仪连接的时候,用户需确保色谱柱被紧紧地密封。事实上实际的应用中是,即使柱的端部进入了少量的空气也不要紧。因为当你将色谱柱连接到色谱仪上使用时,在系统初始加压阶段,在很短的时间内空气就会被溶剂冲刷掉。

 
误区9:所有的C18(L1)色谱柱都是一样的——假!


图片来源: Adam Gault/Getty 图库

美国药典委员会(USP)开发了一种分类系统,用来对每种类型的键合相柱进行分类。由于C18色谱柱是一种广泛应用的色谱柱,故该系统将其称为“L1”。可惜不幸的是,大约有800种以上的L1流入了市场,因此,事实证明这个系统是不可靠的,是一个令人困惑的系统。

 
误区8:反相色谱柱不可以使用纯水相——假!
 

图片来源: Yamada Taro/Getty 图库
 
这个误解其实是起源于有些用户在使用低有机溶剂含量或者纯水作为反相色谱柱的流动相时,发生了俗称相塌陷的现象,所以大家就认为反相色谱柱不可以使用纯水相。许多色谱工作者都被相塌陷现象和保留时间位移现象困扰着,甚至已经失去了努力寻找解决途径的耐心。因此,他们索性就认为不应该在反相色谱柱中运行水含量很高的流动相。然而,事实上市售的反相色谱柱(如极性嵌入和极性封端柱)都是具有水浸润性的,其表面特性是允许使用纯水的,而不会导致塌陷或者保留时间移位。

 
误区7:至少需要10个柱体积才能重新使LC色谱柱达到平衡——假!
 

图片来源: Oleg Moiseyenko/Getty图库
 
平衡时间对于梯度色谱来说是非常重要的,因为它是整个技术的限制因素。这有两种平衡类型:重复平衡和完全平衡。重复平衡也就意味着在无法实现完全平衡的情况下达到的平衡。实际上,如果在随后的运行中,保留时间的重复性是小于0.002 min的,然后对于非离子化溶质的无缓冲洗脱剂和碱性化合物以常用的三氟乙酸和甲酸为添加剂的话,重复平衡在两个柱体积的范围内即可实现。

 
误区6:相较之纯的多孔粒子,表面多孔颗粒会显著降低样品容量——假!
 

图片来源: Don Bishop/Getty 图库
 
HPLC色谱柱填料对样品的容量是与其表面积成正比的,这与硅醇基通过单体键合形成的化学键合相的量相关。然而,研究结果表明:在相同的试验条件下,表面多孔颗粒与多孔粒子对样品的容量是基本上相同的。

 
误区5: UHPLC填料柱比常见的HPLC填料柱更容易堵塞——假!
 

图片来源: Artbox Images/Getty 图库
 
随着柱填料多孔材料粒径的不断减小,使得柱的主要硬件设计跟着一起发生变化。对于sub-2µm UHPLC柱的堵塞,是样品和流动相物质倒伏在柱入口的结果。如果你在进样前对样品进行了净化,如使用固相萃取、过滤或离心等,就可以避开任何污染问题。

 
误区4:保护柱是没必要的——假!
 

图片来源: PM Images/Getty 图库

使用保护柱有很多好处。首先,保护柱可以防止化学物质或颗粒物损坏分析柱。其次,相较之更换一根昂贵的分析柱,更换一根5mm 的保护柱只需要很少的花费。现代的保护柱具有几乎无死体积、更换快速,以及适用于UHPLC的高压等优点。

 
误区3:你不可以将HPLC色谱柱反接以便于冲洗掉其中的颗粒物——假(但有时真)
 

图片来源: Yagi Studio/Getty 图库

实际上HPLC色谱柱的填装压力比最大使用压力高很多(通常会高2倍)。如果装柱时使用了恰当的匀浆剂,并且分配一定的时间使柱床稳定,一支填装良好的色谱柱是完全可以双向使用的。

反向使用色谱柱有一个例外,就是生产商在色谱柱的进样端使用了孔径更大筛板的情况,反向使用可能会将填料从柱床冲出。如果制造商在柱的入口处使用的是高孔隙率的玻璃料,那么将柱反冲的话,可能会将柱填料从填充床上冲洗掉。色谱柱在工厂填装时,出口端的筛板孔径必须比色谱柱中最小颗粒的粒径还要小。譬如,色谱填料平均粒径是5μm,粒径分布范围是3-7μm,出口端筛板孔径必须小于3μm,使填料没有可能从柱床跑到色谱柱筛板外面。大多数生产厂家选择的筛板孔径是2μm。 至于某些厂家两端的柱筛板孔径不一样,一般是进样端大些,出样端小些。因此,一些制造商会在柱子标签处放置一个箭头指示,表明必须仅在一个方向上使用。可以肯定有这种可能性,所以一个色谱工作者应该好好阅读色谱柱手册或说明书,或与制造商确定这根色谱柱是否可以反冲。

 
误区2:色谱柱填料粒径越小、压力越高,分离效果越好——假!
 

图片来源: imagewerks/Getty 图库
 
超小的粒径以及超高的柱压,并不一定是色谱工作者的最佳选择!

现代色谱柱的柱特性研究已经引发出一些新方法来评估一根色谱柱的性能。例如,采用新的表面多孔材料的色谱柱,其柱效与sub-2µm UHPLC柱效一样好,然而与常规的LC填料色谱柱比起来,柱压很低。

 
误区1:柱压不会影响色谱分离效果——假!
 

图片来源: Image Source/Getty 图库
 
色谱的很多参数都是受柱压影响的,包括部分溶质的摩尔体积、停滞体积、柱孔隙度、保留因子、流动相密度、介电常数、固定相结构、pH值和电离常数等。为什么柱压引起了越来越多的关注呢?原因是市售的色谱仪很多是超高压色谱仪和色谱柱。当色谱柱在约2000psi(13.789MPa)压力下运行时,即使保留时间上存在小差异,也并不会引起我们的注意;特别是如果重复性较好及定量不受影响的时候。但是,当柱压接近2000psi(13.789MPa)时,柱压的影响可能就相当明显了。


译自:chromatographyonline
来源:材料与测试
译者:cynthia

凡本网注明"来源:材料与测试"的所有作品,版权均属于材料与测试网,未经本网授权不得转载、摘编或利用其它方式用于商业用途。如仅以传播信息为目的转载、摘编,请注明"来源:材料与测试网"。违者本网将追究相关法律责任。
相关信息
   标题 相关频次
 X射线荧光光谱仪选购宝典
 4
 现代HPLC使用中的七个常见错误
 4
  2015年新色谱柱及配件大盘点之超临界流体色谱法
 3
 “国六标准”来了致使“汽油质量牌照”投放量锐减,液态石油中硫含量应声降低
 3
 2015年新色谱柱及配件大盘点
 3
 2015年新色谱柱及配件大盘点之反相色谱法
 3
 2015年新色谱柱及配件大盘点之辅助设备
 3
 2015年新色谱柱及配件大盘点之离子色谱法
 3
 2015年新色谱柱及配件大盘点之亲水作用色谱法
 3
 2015年新色谱柱及配件大盘点之生物色谱法
 3
 2015年新色谱柱及配件大盘点之手性化合物分离色谱法
 3
 2016年HPLC热门话题预测——为什么有效的HPLC分离对于高复杂系统的分析是至关重要的?
 3
 2016年美国光谱从业人员薪酬调查报告
 3
 HPLC-DAD联合化学计量学鉴定合成色素效果好
 3
 SBWC可否替代HPLC用于药物分析?权威专家来解答
 3
 爱哭的宝宝:眼泪中的维生素
 3
 不测不知道:小朋友的黏土玩具也可能含防腐剂!
 3
 持久性有机污染物生物监测可从鱼胆入手
 3
 从制药到农业:近红外光谱有哪些新的突破?
 3
 代谢指纹图+化学计量学:双剑合璧鉴别藏红花真伪
 3
 德国明斯特大学分析化学中心主任Uwe Karst教授谈ICP-MS在环境研究和生物成像上的应用
 3
 第一台质谱仪发明者弗朗西斯没想到质谱检测可以飞起来
 3
 分析化学家与反运动禁药的那些事
 3
 高效!243种有害物一起检测的肉类分析新方法
 3
 固体废弃物中的重金属含量监测
 3
 固相萃取的三大常见问题
 3
 红外光谱仪:包装材料失效分析的好帮手
 3
 化学分析师,是时候改变了吧?
 3
 化学家将温室气体转变为氢燃料
 3
 加速气相色谱分析的五大助力方法
 3
 甲基麦角新碱药物的化学定量分析新方法
 3
 教授用分析头发断案,年薪可达百万
 3
 捷克帕尔杜比采大学教授谈癌症肿瘤化学表征研究成果
 3
 近红外光谱的应用,专家们这样说。。。
 3
 聚焦造纸厂废水中的环境内分泌干扰物
 3
 绝知此事要躬行——访意大利都灵大学药学生物学Carlo Bicchi教授
 3
 拉曼光谱的未来:表面增强拉曼光谱(SERS)和针尖增强拉曼光谱(TERS)
 3
 辣椒中的色素如何表征?
 3
 离线核磁共振法(NMR)助力中药成分分析
 3
 美国化学家用一种方法分析200种食品污染物
 3
 美国伊利诺斯州立大学教授谈犯罪现场实时分析的新型便携式质谱仪
 3
 美貌与智慧并存的化学分析专家谈赛马兴奋剂的检测
 3
 哪些食物最易掺假?红外光谱技术来解答
 3
 尼古丁中毒?法医竟然这样测?
 3
 您用屠呦呦使用过的核磁共振氢谱法检测药品纯度会获得诺贝尔奖吗?
 3
 热重—红外联用技术对增塑剂进行分析表征
 3
 试验告诉你分析饮用水中纳米颗粒物的完美工具是什么?
 3
 是毒药还是良药?让我们化学分析方法“看”清蜂毒
 3
 蔬菜出口标准高肿么办?先从杀菌剂检测说起。。。
 3
 数据海啸中化学计量学的领航人——对话荷兰内梅亨大学Lutgarde Buydens教授
 3