搜索热:电位 套管
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
风电功率预测技术综述与改进建议
          
Review of Wind Power Prediction Technology and Improved Suggestions

摘    要
随着大规模风电接入电力系统,为了保证电网安全、稳定运行,需要对风电功率进行预测。阐述了不同分类标准下的风电功率预测方法,分析了基于历史数据和基于数值天气预报的功率预测方法,归纳了风电功率预测的主要模型及其优缺点,研究了预测误差的评价指标。认为合理选择预测模型和进行模型性能优化是风电功率预测的关键。在综述国内外风电功率预测技术的研究现状后,针对国内当前对风电场功率预测模型研究与开发工作,提出了改进建议。
标    签 风力发电   功率预测   误差分析   研究进展   Wind power generation   Power prediction   Error analysis   Research advance  
 
Abstract
With large scale wind power integrated into power system, in order to ensure the safe operation of power grid, it is necessary to predict the wind power generation. This paper introduces the prediction methods of wind power generation generally according to different classification criterion, then analyzes the wind power generation technologies based on historical and numerical weather respectively, and summarizes the main models of wind power generation and its advantages and disadvantages, analyzes the predition evaluation index. Draws the conclusion that choosing the reasonable prediction model and optimizes its performance is the key to the wind power generation .After reviewing the status of the predition technologies at home and abroad, some existing problems in the current is pointed out, finally some advice about wind power generation research and development is proposed.

中图分类号 TM614

 
  中国光学期刊网论文下载说明


所属栏目 研究与探索

基金项目

收稿日期 2014/6/16

修改稿日期

网络出版日期

作者单位点击查看

备注张文秀(1989-),男,硕士研究生,研究方向为风力发电技术与控制。

引用该论文: Zhang Wenxiu,Wu Xinfang,Lu Haoqian. Review of Wind Power Prediction Technology and Improved Suggestions[J]. Power & Energy, 2014, 35(4): 436~441
张文秀,武新芳,陆豪乾. 风电功率预测技术综述与改进建议[J]. 电力与能源, 2014, 35(4): 436~441


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】Global Wind Energy Council. Global wind report annual market update 2013[R]. Global Wind Energy Council,2014.
 
【2】Pinson P, Kariniotakis G N. Wind power forecasting using fuzzy neural networks enhanced with on-line prediction risk assessment[J].Power Tech Conference Proceedings 2003 IEEE Bologna,2003(2):8.
 
【3】王丽婕,廖晓钟,高阳,等.风电场发电功率的建模和预测研究综述[J].电力系统保护与控制,2009,37(13):118-121.
 
【4】刘永前,韩爽,胡永生.风电场出力短期预报研究综述[J].现代电力,2007,24(90):6-11.
 
【5】牛东晓,曹树华,赵磊,等.电力负荷预测技术及其应用[M].北京:中国电力出版社,1998.
 
【6】戚双斌,王维庆,张新燕.基于支持向量机的风速与风功率预测方法研究[J].华东电力,2009,37(9):1600-1603.
 
【7】Wen J, Wang X, Zheng Y, et al. Short-term wind power forecasting based on lifting wavelet transform and SVM[C],Power Engineering and Automation Conference (PEAM),2012 IEEE. IEEE,2012:1-4.
 
【8】陈道君,龚庆武,金朝意,等.基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测[J].电网技术,2013,37(4):974-980.
 
【9】Bhaskar K, Singh S N. AWNN-assisted wind power forecasting using feed-forward neural network[J]. Sustainable Energy, IEEE Transactions on,2012,3(2):306-315.
 
【10】陈颖,周海,王文鹏,等.风电场输出功率超短期预测结果分析与改进[J].电力系统自动化,2011,35(15):30-33.
 
【11】张明理,杨晓亮,滕云,等.基于主成分分析与前向反馈传播神经网络的风电场输出功率预测[J].电网技术,2011,35(3):183-187.
 
【12】Shi J, Lee W J, Liu Y, et al. Short term wind power forecasting using Hilbert-Huang Transform and artificial neural network[C],Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 2011 4th International Conference on. IEEE,2011:162-167.
 
【13】Catalo J P S, Pousinho H M I, Mendes V M F. Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal[J]. Sustainable Energy, IEEE Transactions on,2011,2(1):50-59.
 
【14】Nielsen H A, Nielsen T S, Madsen H, et al. Optimal combination of wind power forecasts[J]. Wind Energy,2007,10(5):471-482.
 
【15】Louka P, Galanis G, Siebert N, et al.Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96(12):2348-2362.
 
【16】冯双磊,王伟胜,刘纯,等.风电场功率预测物理方法研究[J].中国电机工程学报,2010,30(2):1-5.
 
【17】Nielsen T S, Madsen H.Short-term wind power forecasting using advanced stastical methods[C].European Wind Energy Conference&Exhibition,2006.
 
【18】王建成,杨苹,杨曦.基于数值天气预报的风电功率预测建模研究[J].可再生能源,2013,31(2):34-38.
 
【19】Magnusson M and Wern L, Wind energy predictions using CFD and HIRLAM forecast. Proceedings of the European wind energy conference EWEC 2001,Copenhagen, Denmark,2001.
 
【20】韩爽.风电场功率短期预测方法研究[D].北京:华北电力大学,2008.
 
【21】Lange M, Focken U. New developments in wind energy forecasting[C].Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008 IEEE. IEEE,2008:1-8.
 
【22】Gallardo C, Gaertner M, Tejeda C,et al. The Casandra project:results of a new wind power operational forecasting system in Spain[C]. Proceedings of EuroPean Wind Energy Conferenee,Madrid,2003.
 
【23】Bustamante E,Cofino A,Navarro J,et al.Wind speed downsealing combining mesoscale and neural autoregressive models[C]. Proceedings of EuroPean Wind Energy Conferenee,London,2004.
 
【24】徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化,2011,35(12):20-26.
 
【25】Zhang Z S, Sun Y Z, Gao D W, et al. A Versatile Probability Distribution Model for Wind Power Forecast Errors and Its Application in Economic Dispatch[J]. 2013.
 
【26】Bessa R, Miranda V, Gama J. Wind power forecasting with entropy-based criteria algorithms[C], Probabilistic Methods Applied to Power Systems, 2008. PMAPS'08. Proceedings of the 10th International Conference on. IEEE,2008:1-7.
 
【27】杨红英,冯双磊,王勃,等.基于线性回归的风电功率预测误差修正方法[J].电力系统及其自动化学报,2013,25(4):14-17.
 
【28】Troen I,Petersen E L. European wind atlas[M]. Roskidle: Risoe National Laboratory,1989.
 
【29】Nielsen T S,Madsen H.WPPT-a tool for wind power prediction[C].EWEA Special Topic Conference, Kassel,2000.
 
【30】Bailey B,Brower MC,Zack J. Short-term Wind Forecasting[C].European Wind Energy Conference,Nice France,1999.
 
【31】Lange B, Rohrig K, Ernst B, et al. Wind power prediction in Germany–Recent advances and future challenges[C],Proceedings of the European Wind Energy Conference.2006.
 
【32】SánchezI O,Ravelo J,Usaola C,et al.Sipreólico-a wind powerprediction system based on flexible combination of dynamic models. application to the spanish power system[C].First IEA Joint Action Symposium on Wind Forecasting Techniques,Norrkoping,Sweden,2002.
 
相关信息
   标题 相关频次
 采用标准棒扣除换能器t0产生误差的成因
 2
 多层塔式H型立轴风机的性能分析
 2
 风力发电机组仿竹塔架的刚度和强度分析
 2
 光致阴极保护研究进展
 2
 声程对斜探头前沿及K值测量的影响
 2
 食品中硒检测技术研究进展
 2
 卧式蒸汽发生器传热管涡流检测缺陷信号的准确性
 2
 圆柱导体绝对式双参数涡流检测技术的误差评价
 2
 Al2O3/Cu复合材料的研究进展
 1
 Laves相Ta-Cr系合金的高温抗氧化性研究进展
 1
 PM2.5团聚测量技术及其研究进展
 1
 TiSiN纳米复合结构涂层的研究进展
 1
 表面处理技术在航天材料中的应用
 1
 玻璃陶瓷复合材料的研究进展
 1
 材料冲蚀磨损的数值模拟研究现状及展望
 1
 茶叶中农药残留测定中前处理技术的研究进展
 1
 大型风光互补电站的设计及运行优化分析
 1
 电网在调峰能力约束下接纳风电能力的估算
 1
 东海海上风电场的运行管理实践与成果
 1
 都是误差惹的祸——探究卧式蒸汽发生器传热管涡流检测失准原因
 1
 镀锌钢板钝化工艺研究进展
 1
 粉末冶金工艺制备不锈钢的研究进展
 1
 风电场的静止无功补偿控制策略和安全运行措施
 1
 风电场无功补偿容量的估算与补偿方式选择
 1
 风电塔筒探伤经验介绍及相关建议
 1
 风机叶片缺陷的无损检测方法
 1
 风力发电机组球墨铸铁件的超声波检测
 1
 风力发电设备无损检测技术研究
 1
 钢筋阻锈剂的阻锈机理及性能评价的研究进展
 1
 海工混凝土聚脲涂层防护研究进展
 1