搜索热:余辉 2006
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
熔盐法制备石墨化碳纳米片
          
Synthesis of Graphitized Carbon Nanosheet by Molten Salt Method

摘    要
以二氨基马来腈为原料、氯化铁为催化剂前驱体、ZnCl2-KCl为熔盐介质,采用熔盐法制备石墨化碳纳米片,研究了反应温度和熔盐/反应物质量比(盐料比)对产物物相组成、显微结构和石墨化程度的影响。结果表明:随着反应温度的升高和盐料比的增加,产物的石墨化程度增大,片状结构的占比增大;当反应温度为1 000 ℃、盐料比为40∶1时,制备得到了石墨化碳纳米片,其直径为2~10 μm,厚度为30 nm。
标    签 熔盐法   碳材料   石墨化   纳米片   molten salt method   carbon material   graphitization   nanosheet  
 
Abstract
Graphitized carbon nanosheets were prepared by molten salt method with diaminomaleonitrile as raw material, iron trichloride as catalyst precursor, and ZnCl2-KCl as molten salt medium. The effects of reaction temperature and salt to reactant mass ratio on the phase composition, microstructure and degree of graphitization of the product were investigated. The results show that the degree of graphitization and the proportion of flake structure in the product increased with the increase of reaction temperature and salt to reactant mass ratio. When the reaction temperature was 1 000℃ and the salt to reactant mass ratio was 40:1, the graphitized carbon nanosheets with diameter of 2-10 μm and thickness of 30 nm were obtained.

中图分类号 TB321   DOI 10.11973/jxgccl201806013

 
  中国光学期刊网论文下载说明


所属栏目 新材料 新工艺

基金项目 国家自然科学基金面上基金资助项目(51472184,51472185,51502216);中国博士后科学基金资助项目(2014M560631);湖北省自然科学基金重点资助项目(2017CFA004);湖北省教育厅高等学校优秀中青年科技创新团队计划项目(T201602)

收稿日期 2017/7/28

修改稿日期 2018/2/27

网络出版日期

作者单位点击查看

备注李俊怡(1994-),女,湖北鄂州人,硕士研究生

引用该论文: LI Junyi,LIANG Feng,TIAN Liang,ZHANG Haijun. Synthesis of Graphitized Carbon Nanosheet by Molten Salt Method[J]. Materials for mechancial engineering, 2018, 42(6): 65~68
李俊怡,梁峰,田亮,张海军. 熔盐法制备石墨化碳纳米片[J]. 机械工程材料, 2018, 42(6): 65~68


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】DENG X, LI J, ZHU S, et al. Metal-organic frameworks-derived honeycomb-like Co3O4/three-dimensional graphene networks/Ni foam hybrid as a binder-free electrode for supercapacitors[J]. Journal of Alloys and Compounds, 2017, 693:16-24.
 
【2】PENDASHTEH A, PALMA J, ANDERSON M, et al. NiCoMnO4 nanoparticles on N-doped graphene:Highly efficient bifunctional electrocatalyst for oxygen reduction/evolution reactions[J]. Applied Catalysis B:Environmental, 2017, 201:241-252.
 
【3】YANG Z, XU X, LIANG X, et al. MIL-53(Fe)-graphene nanocomposites:Efficient visible-light photocatalysts for the selective oxidation of alcohols[J]. Applied Catalysis B:Environmental, 2016, 198:112-123.
 
【4】GEORGAKILAS V, TIWARI J N, KEMP K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews, 2016, 116(9):5464-5519.
 
【5】XU W, XIE W, HUANG X, et al. The graphene oxide and chitosan biopolymer loads TiO2 for antibacterial and preservative research[J]. Food Chemistry,2016,221:267-277.
 
【6】YOON J, LEE T, BAPURAO G B, et al. Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure[J]. Biosensors & Bioelectronics, 2017, 93:14-20.
 
【7】USTAVYTSKA O, KURYS Y, KOSHECHKO V, et al. One-step electrochemical preparation of multilayer graphene functionalized with nitrogen[J]. Nanoscale Research Letters, 2017, 12(1):175.
 
【8】NGUYEN B H, NGUYEN V H. Promising applications of graphene and graphene-based nanostructures[J]. Advances in Natural Sciences:Nanoscience & Nanotechnology, 2016, 7(2):023002.
 
【9】钟继鸣, 王新营, 郁铭芳, 等. 石墨化碳泡沫导热性能研究[J]. 材料导报, 2006, 20(专辑Ⅵ):268-270.
 
【10】张昌鸣. 新型高效液相色谱固定相——多孔石墨化碳[J]. 色谱, 1992(2):78-81.
 
【11】靳权, 刘应亮, 武拥建, 等. 低温催化法制备石墨化碳空心球[J]. 化学进展, 2012, 24(1):39-46.
 
【12】JIN Z, MCNICHOLAS T P, SHIH C J, et al. Click chemistry on solution-dispersed graphene and monolayer CVD graphene[J]. Chemistry of Materials, 2011, 23(14):3362-3370.
 
【13】TOMAŠEVI AC'G -ILI AC'G T, PEŠI AC'G J, MILOŠEVI AC'G I, et al. Transparent and conductive films from liquid phase exfoliated graphene[J]. Optical and Quantum Electronics, 2016, 48(6):319.
 
【14】ZHOU T, CHEN F, LIU K, et al. A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite[J].Nanotechnology,2011,22(4):045704.
 
【15】TIAN L, LI J, LIANG F, et al. Molten salt synthesis of tetragonal carbon nitride hollow tubes and their application for removal of pollutants from wastewater[J]. Applied Catalysis B:Environmental, 2018, 225:315-321.
 
【16】LIU X, GIORDANO C, ANTONIETTI M. A facile molten-salt route to graphene synthesis[J]. Small, 2014, 10(1):193-200.
 
【17】LIU X, ANTONIETTI M. Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets[J]. Carbon, 2014, 69(2):460-466.
 
相关信息
   标题 相关频次
 熔盐氮化法制备六方氮化硼纳米片
 10
 催化热解三聚氰胺合成竹节状氮掺杂碳纳米管
 6
 微波熔盐辅助硼热/碳热还原法制备ZrB2-SiC复合粉
 4
 熔盐法合成烧绿石结构La2Zr2O7粉体
 3
 Cr2O3催化氮化制备Si3N4/SiC耐火材料及其性能
 2
 SiC含量对ZrB2-SiC/MgO-C低碳复合耐火材料性能的影响
 2
 ZrB2-SiC复合粉体添加量对低碳镁碳耐火材料性能的影响
 2
 采用熔盐法在钼基体上制备硅化钼涂层的结构
 2
 硅酸钠添加量对多孔硅藻土陶瓷性能的影响
 2
 过量Bi2O3对熔盐法制备钛酸铋的影响
 2
 熔盐法制备镁橄榄石轻质保温隔热材料的物相及性能
 2
 #国内材料周报#自旋量子通道转换“入住”石墨烯分子条带
 1
 《Science》重磅!历经60年日本科学家首次合成碳纳米带!
 1
 130/3.81-MX锅炉低温过热器管破裂分析
 1
 2016中国国际碳材料大会 即将召开!
 1
 Ca-α/β-Sialon结合刚玉复合材料的力学性能
 1
 MIT发明的材料是目前已知的强度最大、最轻的材料之一
 1
 Nature子刊: 西安交大科研人员首次合成碳的新型同素异形体
 1
 T23高温再热器管爆管原因分析
 1
 不同温度下多层结构TiCN/TiC/TiN镀层的摩擦学行为
 1
 采用双层辉光等离子技术在420不锈钢表面制备ZrO2改性层
 1
 多晶金刚石微粉的制备及其得率和耐磨性
 1
 多孔生物质炭材料,打造更高性能的超级电容器
 1
 二维金属碳化物纳米片衍生物研究取得新进展
 1
 高导热碳材料研究进展
 1
 高效液相色谱法测定食品接触材料中苯甲醛的迁移量
 1
 铬颗粒尺寸对镍-铬复合镀层900℃抗空气氧化和耐Na2SO4熔盐腐蚀性能的影响
 1
 海大与华高墨烯共建“新型碳材料联合实验室”
 1
 军民两用先进碳材料大会召开,石墨烯再成焦点
 1
 科学家成功捕获“消失”的富勒烯
 1