搜索热:程玉欣 超声波
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
高压下光电材料结构相变及物理性能的研究进展
          
Research Progress on Structure Phase Transition and Physical Properties of Photoelectric Materials Under High-Pressure

摘    要
高压技术能够有效调节光电材料的晶格和电子态,是调控光电材料物理性能的可行手段及合成新光电材料的重要方法。概述了国内外光电材料的高压研究现状,介绍了高压作用对光电材料晶体结构、电子构型及物理性能的影响,分析了高压下光吸收、电导率及光电性能的增强机制,探讨了压力诱导结构相变与物理性能的内在联系。展望了光电材料高压研究的发展。
标    签 光电材料   晶体结构   物理性能   高压   photoelectric material   crystal structure   physical property   high-pressure  
 
Abstract
High-pressure technique can efficiently tune the crystal lattice and electronic state of photoelectric materials. It is a feasible route to adjust physical properties of photoelectric materials, and an important method for synthesizing new photoelectric materials. A review of the high-pressure research progress on photoelectric materials is summarized. The effects of high-pressure condition on the crystal structure, electronic configuration and physical properties of photoelectric materials are described. The mechanism of enhancing light absorption, conductivity and photoelectric performance is analyzed. The intrinsic relation between the pressure-induced structural phase transition and physical properties is discussed. The development possibility of the high-pressure research on photoelectric materials is in prospect.

中图分类号 TB321   DOI 10.11973/jxgccl201806001

 
  购买该论文  中国光学期刊网论文下载说明


所属栏目 综述

基金项目

收稿日期 2018/4/28

修改稿日期 2018/5/12

网络出版日期

作者单位点击查看

备注李莎莎(1970-),女,安徽萧县人,高级工程师,学士

引用该论文: LI Shasha,ZHANG Ganghua,ZENG Tao. Research Progress on Structure Phase Transition and Physical Properties of Photoelectric Materials Under High-Pressure[J]. Materials for mechancial engineering, 2018, 42(6): 1~6
李莎莎,张刚华,曾涛. 高压下光电材料结构相变及物理性能的研究进展[J]. 机械工程材料, 2018, 42(6): 1~6


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】YANG S Y, SEIDEL J, BYRNES S J, et al. Above-bandgap voltages from ferroelectric photovoltaic devices[J]. Nature Nanotechnology, 2010, 5:143-147.
 
【2】蔡苇,符春林,高家诚,等.铁电薄膜光伏效应及形成机制研究进展[J].真空科学与技术学报,2012,32(7):559-565.
 
【3】JAFFE A, LIN Y, MAO W L, et al. Pressure-induced conductivity and yellow-to-black piezochromism in a layered Cu-Cl hybrid perovskite[J]. Journal of the American Chemical Society, 2015, 137(4):1673-1678.
 
【4】MAO W L, WANG L, DING Y, et al. Distortions and stabilization of simple-cubic calcium at high pressure and low temperature[J]. Proceedings of the National Academy of Sciences of the United State of America, 2010, 107(22):9965-9968.
 
【5】MA Y, EREMETS M, OGANOV A R, et al. Transparent dense sodium[J]. Nature, 2009, 458(7235):182-185.
 
【6】YAO M G, WANG T Y, YAO Z, et al. Pressure-driven topological transformations of iodine confined in one-dimensional channels[J]. The Journal of Physical Chemistry C, 2013, 117(47):25052-25058.
 
【7】ZHANG M, DANG Y Q, LIU T Y, et al. Pressure-induced fluorescence enhancement of the BSA-protected gold nanoclusters and the corresponding conformational changes of protein[J]. The Journal of Physical Chemistry C, 2013, 117(1):639-647.
 
【8】LI Q, LI S, WANG K, et al. Compression studies of face-to-face п-stacking interaction in sodium squarate salts:Na2C4O4 and Na2C4O4·3H2O[J]. The Journal of Chemical Physics, 2012,137(18):184905.
 
【9】DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system[J]. Nature, 2015, 525(7567):73-76.
 
【10】EREMETS M I,TROYAN I A. Conductive dense hydrogen[J]. Nature Materials, 2011, 10(12):927-931.
 
【11】BENKHETTOU N, RACHED D, RABAH M. Ab-initio calculation of stability and structural properties of cadmium chalcogenides CdS, CdSe, and CdTe under high pressure[J]. Czechoslovak Journal of Physics, 2006, 56(4):409-418.
 
【12】ZHAO J G,YANG L X, YU Z H, et al. Structural phase transitions and metallized phenomena in arsenic telluride under high pressure[J]. Inorganic Chemistry, 2016, 55(8):3907-3914.
 
【13】赵景庚,杨留响,于振海,等.A2B3型金属硫族化合物的高压结构和物性研究[C]//第十八届中国高压科学学术会议缩编文集. 成都:中国物理学会,2016.
 
【14】GONZÁLEZ J, RINCÓN C. Optical absorption and phase transitions in CuInSe2 and CuInS2 single crystals at high pressure[J].Journal of Applied Physics,1989, 65(5):2031-2034.
 
【15】BEISTER H J, VES S, HONLE W, et al. Structural phase transitions and optical absorption of LiInSe2 under pressure[J]. Physical Review B, 1991,43:9642.
 
【16】GONZALEZ J, RINCÓN C. Optical absorption and phase transitions in Cu-Ⅲ-Ⅵ2 compound semiconductors at high pressure[J]. Journal of Physics and Chemistry of Solids, 1990, 51(9):1093-1097.
 
【17】GONZÁLEZ J, CALDERÓN J, TINOCO T, et al. CuGa(SxSe1-x)2 alloys at high pressure:Optical absorption and X-ray diffraction studies[J]. Journal of Physics and Chemistry of Solids,1995,56(3/4):507-516.
 
【18】PLUENGPHON P, BOVORNRATANARAKS T, PINSOOK U, et al. The effects of Na on high pressure phases of CuIn0.5Ga0.5Se2 from ab initio calculation[J]. Journal of Physics:Condensed Matter, 2012, 24:095802.
 
【19】NAGANE S, BANSODE U, GAME O, et al. CH3NH3PbI(3-x)(BF4)x:Molecular ion substituted hybrid perovskite[J]. Chemical Communications, 2014, 50(68):9741-9744.
 
【20】GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7):506-514.
 
【21】BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458):316-319.
 
【22】HODES G. Perovskite-based solar cells[J].Science, 2013, 342(6156):317-318.
 
【23】SONG J Z, XU L M, LI J H, et al. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices[J]. Advanced Materials, 2016, 28(24):4861-4869.
 
【24】PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I):Novel optoelectronic materials showing bright emission with wide color gamut[J].Nano Letters, 2015, 15(6):3692-3696.
 
【25】ZHANG L, ZENG Q X, WANG K. Pressure-induced structural and optical properties of inorganic halide perovskite CsPbBr3[J]. The Journal of Physical Chemistry Letters, 2017, 8(16):3752-3758.
 
【26】BEIMBORN J C, PORNTHIP T Y, DUKOVIC G, et al. Pressure response of photoluminescence in cesium lead iodide perovskite nanocrystals[J]. The Journal of Chemical Physics, 2018.DOI:10.1021/acs.jpcc.8b03280.
 
【27】NAGAOKA Y, KATIE H K, LI Y P, et al. Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels[J]. Advanced Materials, 2017,29:1606666.
 
【28】MITZI D B, WANG S, FIELD C A, et al. Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets[J]. Science, 1995, 267(5203):1473-1476.
 
【29】LANG L, YANG J H, LIU H R, et al. First-principles study on the electronic and optical properties of cubic ABX3halide perovskites[J]. Physics Letters A, 2014, 378(3):290-293.
 
【30】STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G. Semiconducting tin and lead iodide perovskites with organic cations:Phase transitions,high mobilities, and near-infrared photoluminescent properties[J]. Inorganic Chemistry, 2013, 52(15):9019-9038.
 
【31】UMARI P, MOSCONI E, DE ANGELIS F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications[J]. Scientific Reports, 2014, 4:4467-4473.
 
【32】关丽,李明军,李旭,等.有机卤化物钙钛矿太阳能电池的研究进展[J].科学通讯,2015,60(7):581-592.
 
【33】邵景珍,董伟伟,邓赞红,等.基于有机金属卤化物钙钛矿材料的全固态太阳能电池研究进展[J].功能材料,2014,45(24):24008-241013.
 
【34】SWAINSON I P, TUCKER M G, WILSON D J, et al. Pressure response of an organic-inorganic perovskite:Methylammonium lead bromide[J]. Chemistry of Materials, 2007, 19(10):2401-2405.
 
【35】WANG Y G, LÜ X J, YANG W G, et al. Pressure-induced phase transformation, reversible amorphization,and anomalous visible light response in organolead bromide perovskite[J]. Journal of the American Chemical Society, 2015, 137(34):11144-11149.
 
【36】LÜ X J, WANG Y G, STOUMPOS C C, et al. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization[J]. Advanced Materials, 2016, 28(39):8663-8668.
 
【37】LÜ X J, YANG W G, QUAN Z W, et al. Enhanced electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions[J]. Journal of the American Chemical Society, 2014, 136(1):419-426.
 
【38】LÜ X J, HU Q Y, YANG W G, et al. Pressure-induced amorphization in single-crystal Ta2O5 nanowires:A kinetic mechanism and improved electrical conductivity[J]. Journal of the American Chemical Society, 2013, 135(37):13947-13953.
 
【39】HAUMONT R, BOUVIER P, PASHKIN A, et al.Effect of high pressure on multiferroic BiFeO3[J]. Physical Review B, 2009, 79(18):184110.
 
相关信息
   标题 相关频次
 (Na0.52K0.44Li0.04)(Nb0.9Sb0.04Ta0.06) O3压电陶瓷及蜂鸣器的制备与性能
 2
 Al2O3/Cu复合材料的研究进展
 2
 AlMgZnSnCuMnNix高熵合金的微观结构和电化学性能
 2
 AZ91镁合金表面电化学沉积羟基磷灰石涂层的制备及其耐蚀性
 2
 Si(111)和Si(100)衬底上AlN薄膜的激光分子束外延生长特征
 2
 钡掺杂量对镧掺杂锆锡钛酸铅陶瓷电性能的影响
 2
 不粘锅产品的质量分析
 2
 干法室温振动制备纳米铜粉
 2
 高温高压CO2环境介质中X60钢的腐蚀
 2
 共沉淀法制备ZrW2O8及其中间产物的晶体结构
 2
 李莎莎
 2
 氢化物发生-原子荧光光谱法在金属及合金中痕量元素测定方面的最新进展
 2
 特殊黄铜合金用于N80钢的电化学防垢效果
 2
 我国金属材料物理性能现场检测技术现状与展望
 2
 直接稀释进样-气相色谱-质谱法分析烟用香精
 2
  “2017材料物理测试新技术研讨会”会议通知 (第二轮)
 1
 5 GPa压力条件下Al-Cu合金的共晶转变
 1
 测定热塑性丁苯橡胶颗粒样品物理性能的制片方法
 1
 第三届金相大赛正式开始!更有专家点评、好礼相送哦!
 1
 电感耦合等离子体原子发射光谱法测定锡锗中间合金中锗
 1
 复旦大学武利民教授团队在可见光超材料研究中取得重要进展
 1
 高温高压条件下13Cr钢的乙酸腐蚀
 1
 高性能单层二硫化钨
 1
 侯吉旋:从物理学角度看好莱坞大片《蚁人》
 1
 化学沉积镍-钼-磷合金在NaCl溶液中的耐腐蚀性能
 1
 化学所在多稳态金属有机光电材料方面取得新进展
 1
 火焰原子吸收光谱法测定银基合金中锂
 1
 尖晶石结构姜—泰勒效应的深度探索
 1
 解释神秘的“四维”氧化铁
 1
 科学家首次发现天然锆石晶体结构的化学膨胀
 1