搜索热:x射线 228
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
U-2.5% Nb合金表面的氢蚀特性
          
Hydriding Corrosion Characteristics of U-2.5% Nb Alloy Surface

摘    要
利用气固反应系统对U-2.5% Nb合金表面进行了氢化,采用体视显微镜原位观察U-2.5% Nb合金的氢蚀,利用X射线衍射(XRD)、激光扫描共聚焦显微镜(LSCM)和扫描电镜(SEM)表征该合金氢化前后的成分及形貌。结果表明:在70℃、氢压为一个大气压的气氛中,U-2.5% Nb合金的氢化反应速率很高,氢化后形成了UH3化合物;合金表面氢蚀点边缘并非圆滑,而是呈条状优先形核相向外凸出。U-2.5% Nb合金表面氢化腐蚀的机制是:贫铌α相的氢蚀速率大于富铌γ1-2相的而优先发生氢蚀,随后贫铌α相之间的γ1-2相也相继发生氢蚀而连成一片后迅速长大。
标    签 U-2.5% Nb合金   氢蚀   特性   U-2.5%Nb alloy   hydrogen corrosion   characteristic  
 
Abstract
The surface of U-2.5% Nb alloy was hydrogenated by gas-solid reaction system. Hydrogen corrosion of U-2.5% Nb alloy was observed in situ using a stereomicroscope, and the composition and morphology of the alloy before and after hydriding were characterized by X-ray diffraction (XRD), laser scanning confocal microscopy (LSCM) and scanning electron microscopy (SEM). The results showed that the hydrogenation rate of U-2.5% Nb alloy was very high at 70℃ and hydrogen pressure was one atmosphere, and UH3 compound was formed after hydriding. The edge of the hydrogen corrosion point on the surface of the alloy was not smooth, but rather the nucleus was preferentially nucleated and protruded outwards. The mechanism of hydrogenation corrosion on the surface of U-2.5% Nb alloy is that the hydrogen corrosion rate of α-phase of niobium is higher than that of niobium γ1-2 phase and preferential hydrogen corrosion of α phose occurs, and hydrogen corrosion of γ1-2 phase occurred one after another and quickly grew up.

中图分类号 TG172.3   DOI 10.11973/fsyfh-201805015

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 中国工程物理研究院发展基金(2014B0301049)

收稿日期 2016/8/30

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: ZHU Lijun,JI Hefei,SHI Peng,CHEN Xianglin,BIN Ren,YANG Jiangrong. Hydriding Corrosion Characteristics of U-2.5% Nb Alloy Surface[J]. Corrosion & Protection, 2018, 39(5): 395


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】RITCHIE A G,GREENWOOD R C,RANDLES S J. The kinetics of the uranium-oxygen-water vapour reaction between 40 and 100℃[J]. Journal of Nuclear Materials,1986,139(2):121-136.
 
【2】MAGNANI M J. Reaction of uranium and its alloys with water vapor at low temperatures[M]. USA:Sandia Laboratory,1974,3.
 
【3】BALOOCH M,HAMZA A V. Hydrogen and water vapor adsorption on and reaction with uranium[J]. Journal of Nuclear Materials,1996,230(3):259-270.
 
【4】RITCHIE A G. The kinetic and mechanism of the uranium-water vapour reaction-an evaluation of some published work[J]. Journal of Nuclear Materials,1984,120(2):143-153.
 
【5】HASCHKE J M. Reactions of plutonium and uranium with water:kinetics and potential hazards[M]. Irvine:Los Alamos National Lab,1995.
 
【6】CALHOUN C A,GARLEA E,SISNEROS T,et al. Effects of hydrogen on the mechanical response of α-uranium[J]. Journal of Nuclear Materials,2015,465:737-745.
 
【7】BAZLEY S G,PETHERBRIDGE J R,GLASCOTT J,et al. The influence of hydrogen pressure and reaction temperature on the initiation of uranium hydride sites[J]. Solid State Ionics,2012,211:1-4.
 
【8】BLOCH J,SIMCA F,KROUP M,et al. The initial kinetics of uranium hydride formation studied by a hot-stage microscope technique[J]. Journal of Less Common Metals,1984,103(1):163-171.
 
【9】KNOWLES J P,FINDLAY I M,GEESON D A,et al. The influence of vacuum annealing on the nucleation and growth kinetics of uranium hydride[J]. MRS Online Proceedings,2012:1444(1):211-216.
 
【10】SCOTT T B,ALLEN G C,FINDLAY I,et al. UD3 formation on uranium:evidence for grain boundary precipitation[J]. Philosophical Magazine,2007,87(2):177-187.
 
【11】ZHANG G,WANG X,WU J,et al. Influence of silicon impurity on the reaction of U-0.7% Ti alloy and hydrogen[J]. Journal of Alloys and Compounds,2015,648:122-126.
 
【12】DEMINT A L,LECKEY J H. Effect of silicon impurities and heat treatment on uranium hydriding rates[J]. Journal of Nuclear Materials,2000,281(2):208-212.
 
【13】STITT C A,PARASKEVOULAROS C,HARKEN N J,et al. The effects of metal surface geometry on the formation of uranium hydride[J]. Corrosion Science,2015,98:63-71.
 
【14】SHI P,SHEN L,BAI B,et al. Preferred hydride growth orientation of U-0.79% Ti alloy with β+U2Ti microstructure[J]. Journal of Nuclear Materials,2013,441(1/3):1-5.
 
【15】纪和菲. 组织结构对U-5.7% Nb氢化反应的影响[D]. 绵阳:中国工程物理研究院,2013.
 
【16】LI R,WANG X. Effect of niobium additions on initial hydriding kinetics of uranium[J]. Journal of Nuclear Materials,2014,449(1):49-53.
 
【17】JI H,SHI P,LI R,et al. The microstructure and hydriding characteristics of high temperature aged U-13% Nb alloy[J]. Journal of Nuclear Materials,2015,464:43-47.
 
【18】KATZ O M,GULBRANSEN E A. Some observations on the uranium-niobium-hydrogen system[J]. Journal of Nuclear Materials,1962,5(3):269-279.
 
【19】OWEN L W. A microscope study of the initiation of hydrogen-uranium reaction[J]. Corrosion Science,1966,6:461-465.
 
相关信息
   标题 相关频次
 不同冲击功对中碳合金钢腐蚀磨损的影响
 2
 U-Ti合金的奥氏体晶粒度检测技术
 1
 大型观览车主轴系统的声发射信号特征
 1
 关于工业检测用放射源的特性
 1
 海洋和沿海环境铝大气腐蚀特征及影响因素
 1
 金属材料微波烧结的研究现状
 1
 抗菌不锈钢的发展与应用
 1
 某电厂水冷壁管爆裂原因分析
 1
 纳米流体及其对金属腐蚀行为的影响
 1
 氢蚀430不锈钢中超声表面波的传播特性
 1
 全光谱原子发射光谱技术的特点与应用
 1
 射线检测底片伪像的甄别与预防
 1
 西安交大调控薄膜的磁学特性研究取得进展
 1
 运用振动声学原理实时在线检测瓷支柱绝缘子缺陷
 1
 铸钢件表面电镀锌过程主要工艺参数的控制
 1