搜索热:相控阵 对比试件
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
工质线性变比热时空气标准Lenoir循环热力学分析
          
Thermodynamic Analysis of an Airstandard Lenoir Cycle with Linear Variable Specific Heats of Working Fluid

摘    要
考虑实际循环中工质比热随温度变化的特性,建立了工质比热随温度线性变化时的可逆空气标准Lenoir循环模型,运用经典热力学理论和方法,结合数值计算对循环进行热力学分析,得到了循环输出功和压缩比、效率和压缩比以及功与效率之间的特性关系。通过与工质比热恒定时的空气标准Lenoir循环性能进行分析比较,可知工质的线性变比热特性对Lenoir循环的热力学性能有较大的影响。所得结论对该循环的应用有一定指导作用。
标    签 经典热力学   可逆循环   空气标准Lenoir循环   热力学分析   Classical thermodynamics   Reversible cycle   Airstandard Lenoir cycle   Thermodynamic analysis  
 
Abstract
Considering the effects of variable specific heats of working fluid on the performance of practical cycle, a thermodynamic model of a reversible airstandard Lenoir cycle with the linear relation between specific heat of working fluid and its temperature was established by using the classical thermodynamics. The relations between the work output and the compression ratio, between the efficiency and the compression ratio, as well as between the work output and efficiency were derived by detailed numerical examples. Moreover, by comparing with the thermodynamic performance of airstandard Lenoir cycle with constant specific heats of working fluid, it was known that the effected of variable specific heats of working fluid on the cycle performance were obvious. The results may provide some guidelines for the application of the Lenoir cycle.

中图分类号 TK12

 
  购买该论文  中国光学期刊网论文下载说明


所属栏目 能源战略

基金项目 国家自然科学基金(10905093)

收稿日期 2014/7/14

修改稿日期

网络出版日期

作者单位点击查看

备注周骏乐(1990),男,本科,从事能源利用与能量转换装置及理论研究工作。

引用该论文: Zhou Junle,Chen Lingen,Sun Fengrui. Thermodynamic Analysis of an Airstandard Lenoir Cycle with Linear Variable Specific Heats of Working Fluid[J]. Power & Energy, 2014, 35(6): 678~682
周骏乐,陈林根,孙丰瑞. 工质线性变比热时空气标准Lenoir循环热力学分析[J]. 电力与能源, 2014, 35(6): 678~682


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】Carnot S. Reflections on the motive power of fire[M]. Paris: Bachelier,1824.
 
【2】Sieniutycz S, Salamon P (Eds.). Advances in Thermodynamics, Volume 1: C7+ Fraction Charcterization[M]. New York: Taylor & Francis,1990.
 
【3】Mansoori G A (Ed.). Advances in Thermodynamics, Volume 2: Fluctuation Theory of Mixtures[M]. New York:Taylor & Francis,1990.
 
【4】Sieniutycz S, Salamon P (Eds.). Advances in Thermodynamics, Volume 3:Nonequilibrium Theory and Extremum Principles[M]. New York: Taylor & Francis,1990.
 
【5】Hoffman E J (Ed.). Advances in Thermodynamics, Volume 5: Analytic Thermodynamics[M]. New York: Taylor & Francis,1991.
 
【6】Sieniutycz S, Salamon P (Eds.). Advances in Thermodynamics, Volume 6: Flow, Diffusion, and Rate Process[M]. New York: Taylor & Francis,1992.
 
【7】Klein S A. An explanation for observed compression ratios in internal combustion engines[J]. Trans. ASME J. Eng. Gas Turbine Pow.,1991,113(4):511513.
 
【8】AnguloBrown F , RochaMartinez J. A, NavarreteGonzalez T D. A nonendoreversible Otto cycle model:improving power output and efficiency[J]. J.Phys.D:Appl.Phys.,1996,29(1):8083.
 
【9】AbuNada E, AlHinti I, AlAarkhi A, et al. Thermodynamic modeling of sparkignition engine: Effect of temperature dependent specific heats[J]. Int. Comm. Heat Mass Transfer,2005,33(10):12641272.
 
【10】Chen L, Lin J, Sun F, et al. Efficiency of an Atkinson engine at maximum power density[J]. Energy Convers. Manage.,1998,39(3/4):337341.
 
【11】Ghatak A, Chakraborty S. Effect of external irreversibilities and variable thermal properties of working fluid on thermal performance of a Dual internal combustion engine cycle[J]. Strojnicky Casopsis (J. Mechanical Energy),2007,58:112.
 
【12】Ge Y, Chen L, Sun F, et al. Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid[J]. Int. J. Therm. Sci.,2005, 44(5):506511.
 
【13】Ge Y, Chen L, Sun F, et al. Performance of an endoreversible Atkinson cycle[J]. J. Energy Inst.,2007,80(1):5254.
 
【14】Ge Y, Chen L, Sun F, et al. Performance of an endoreversible Diesel cycle with variable specific heats of working fluid[J]. Int. J. Ambient Energy,2008,29(3):127136.
 
【15】Ge Y, Chen L, Sun F, et al. Performance of a reciprocating endoreversible Brayton cycle with variable specific heats of working fluid[J]. Termotehnica,2008,12(1):1923.
 
【16】Liu C, Chen L, Sun F. Influence of variable specific heats of working fluid on performance of an endreversible MeletisGeorgiou cycle[J]. Int. J. Ambient Energy,2012,33(1):922.
 
【17】Lichty C. Combustion Engine Processes[M]. New York: McGrawHill,1967.
 
【18】Georgiou D P. Useful work and the thermal efficiency in the ideal Lenoir with regenerative preheating[J]. J. Appl. Phys.,2008,88(10):59815986.
 
【19】沈勋,陈林根,戈延林,等.恒温热源内可逆Lenoir循环功率效率特性分析与优化[J].热科学与技术,2013,12(1):6267.
 
【20】龚舒文,陈林根,孙丰瑞.包含多变过程的内可逆Lenoir循环性能分析与优化[J].节能,2013,32(7):2226.
 
【21】王超,陈林根,戈延林,等.工质变比热和传热损失对内可逆矩形循环性能的影响[C].高等学校工程热物理第十九届全国学术会议论文集,论文编号:A13011,郑州,2013.
 
相关信息
   标题 相关频次
 包含多变过程的内可逆Otto循环有限时间热力学分析
 4
 不可逆矩形循环的功率和效率特性
 4
 高炉余能余热驱动ICR Brayton CHP装置的火用经济性能优化
 4
 高炉余能余热驱动ICR Brayton CHP装置的经济性能建模与计算分析
 4
 工质变比热对内可逆Meletis-Georgiou循环性能的影响
 4
 板状结构缺陷电磁超声导波检测技术研究进展
 1
 基于磁致伸缩效应的导波无损检测技术研究进展
 1